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We consider a motion of a viscous incompressible liquid in a toroidal cavity with-
in a top spinning with an arbitrary angular velocity and acceleration, The results
obtained can be used to determine the position of the toroidal tube filled with a
viscous liquid relative to the top axes of inertia, which will minimize the time
necessary to stabilize the motion of the top,

1, Statement of the problem, It wasshown in [1] for the motion of a solid
with cavities completely filled with a viscous liquid, that for the first approximation to
the value of the Reynolds number R = 2/ Tv <€ 1 and for large values of time ¢ > B A,
the contribution of the relative motion of the liquid to the moment of impulse of the
solid-liquid system does not depend on the initial motion of the liquid and can be writ-
ten in the form 3 .
L=t 3 P @e®  py=—\ P P av .1

i,j=1 \4
where the integration is performed over the volume of the cavity, & is the angular ac-
celeration of the solid and ¥ is the solution of the system (see [1])

AgD= ys®p (e ], divg®P -0, Plg—0 (1.2)

When time is large, the quantities £% and s determine the velocity u of the liquid
relative to the solid, and its generalized pressure p

3 3
! i i
u=-— ERALN p= 2 g;s™®
i=1 [E=SR
In [1] we find the values of P;; computed for a sphere, an ellipsoid and a cylinder,
Below we consider the case of a toroidal cavity, representing the simplest example of a
doubly connected region,

2. Investigation of equations of motion of a liquid in a torus,
Let the cavity have the form of a torus with the median line radius denoted by R and
the tube radius by . We introduce the intrinsic coordinate system of the torus with its
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center at the center of symmetry, the oz -axis directed along the symmetry axis and the
ox- and oy -axes situated in the plane of symmetry, In such a coordinate system the
tensor | P;; | is diagonal and Pyx = Pyy-

Since the right-hand side of (1,2) contains the unit vector of the Cartesian system,
we shall seek the Cartesian components of the velocities §®), We shall however write
the operator A using the toroidal «, B, ¢; c¢h @ = v coordinate system (see e. g, [2])
which allows the separation of variables

T=¢pcosp, y=cpsing, z=csinP/ A4
{E=R'—1r2 A=71—cosP, p=sha/d)

Within the torus we have 7> 1o = R /r and in the following we shall assume, for sim-
plicity, that ¢ = 1.

Since divie®, r] =0, we have As® = 0, i,e, the effective pressure is a harmonic
function,

We seek a solution of the system (1,2) in the form §® = g,® 4 £, ® where §® is
given by the equation

ATV =[eD,x], g0 g=0 2.1)
while & can be found using & , from
AP =g, divel=—dive], gPls=0 (2.2)
so that A rot L) = 0.
From (2,1) and (2, 2) it follows that A div & = — A div 8,® = 0, L. div§®,

div & and rot &® are also harmonic functions, Below we shall solve (2.1) and (2,2)
for a partcular set of the unit vectors e®,

38, Angular acceleration {n the direction of the oz-axis, Letus
first consider the case i=3. We write the equations in the following form (omitting
the superscript in £ for simplicity):

ALy =¥ §nls=0, Alyy=2, G ls=0, AL, =0, [,lg=0 (3.1)

This implies that §;, = 0. The boundary conditions for §,, and §,, are independent
of B and ¢, while the right-hand sides of the corresponding equations are even in g and
contain ¢ only in the form of the multiplying factors sin ¢ and cos ¢. Taking this
into account and using the method of separation of variables, we can write the solution

of (3,1) in the for .
(.01 m L= —lbising, Lyy="Cicosg (3.2)

£ = Al [._%_ fo (x) 4 2 fon (%) cOS mB]
M=} =

) = b Qb (0 BEE 751__7. 2 ()
where Q,F(t) are the associated Legendre functions of second kind (see e, g, [3]) and
the coefficients p,, are determined by the boundary conditions f,,(t,) = 0.1If 7o is large,
then the lower approximation gives e.g. by = (V 2 / m)v, 2
Next we consider §,. From (3,2) it follows that div §; = 0, therefore for §, we have
AL, = Vs, div§, = 0 and &; |g = 0, which implies that £, =0 and s = 0.
Thus the expressions (3,2) give an exact solution of (1,2) for i = 3. This means that
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the angular acceleration directed along the torus axis is associated with the correspond-
ing effective pressure and the velocity of the liquid component along this axis, both of
which are equalto zero, The flow is planar and the liquid rotates along the annulus with
the velocity ptoportional to §;. The reason for this is easily discerned when we recall
that without the viscosity the liquid would not rotate relative to the inertial reference
systern but move as a unit with the velocity [r, ] relative to the torus, The viscosity
causes the outermost layers of the liquid to adhere to the torus surface and a drag devel-
ops between the torus and the liquid which results in 2 more complex distribution of ve-
locities in the cross section of the torus,

Substituting the solution (3, 2) into (1, 1), we obtain

oo

162 YT 14 > &
ez = ‘—% [TS ot mar+ > S -———f”" O @ dr]
o m=11g
At large 1, the integrals can be easily computed to give
P i [1 +0 (—1—)1
2 T Gyt To? / | (3.3)

4, Angular acceleration along the ox-axis, Letusnow considera
more complicated case when ; = 1 and e® = e,. (It is clear that the case i = 2 is
completely analogous), Let us determine §,. The difference between the system (2,1)
for this case and (3.1) can be described by the following cyclic transformation x — y —
z — z. From this it is evident that [;, = 0 and [;, = {; sin ¢, where {, is given by the
formulas (3, 2). The solution for {1y has the form

Ly, =A% 2 g, (%) sin mB (4.1)

M)

- A
Em (O = ¢, Qr_y, (V) + 22 T Vr—;n:T Qhaay, ()
The coefficients cp, can be determined from the boundary condition g ,(t,) = 0.
Let us find §,. Using (4.1) we find that div §; = F and this leads to the following

system for 3,: AL, =Vs, divky=—F, &lg=0 (4.2)

The boundary conditions are independent of ¢ and B, therefore the character of the
dependence of f,and son ¢ and § is determined only by the properties of the quan-
tity F which is odd in § and contains ¢ only as sin @. As the result, §, and s canbe
written in the form

bop = —§~ sin 2@ 4" 2 k,, (v) sin mB (4, 3)
m=1
1 o
Ly =5 A 2 [Z,, (%) — cos 29k, (v)] sin mB
M=)

[

pe=A"sing [“’2"‘ go (%) + 2 g, (T) COS mﬁ]

m==1

o0
5= A"*sing 2 @, Qs (1) sin mB

Moy
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The last equation of (4, 3) takes into account the harmonic property of the functions s
(see e, 8. [2]). The coefficients a,, and the functions k. (1), L;,(t) and gx(t) can obvi-
ously be found from the equations and the boundary conditions,

Let us write the functions hy,, I, and g, in the form resembling that of f,,(¥) and
gm(t) (see (3.2) and (4,1), where d,,, ep,and k,, are constants)

by (0 =2d, Q% o, (V) + H, (1) (4.4)
L. ()= 2eQO_./2 (V)4 L, ()
G (1) = by QL sy (0 4+ K, (9)

The first terms in these expressions make no contribution to the left-hand part of the
first equation of (4,2), To clarify the manner in which dp,, ¢, and k,, are chosen, we
consider the following formal symmetry of Egs, (4,2),

The coordinates =z, y and z remain invariant under the substitution © — ™ and
B —» m — B , but on the other hand, we have F -» — F and s — — s (see (4,1) and (4.3)),
Therefore we must have &, —» — §, sothate,g, hy — &'%2(—1)™p, (see 4,3)), The
function h,,(t) remains finite when 7 — oo, consequently it must have the form
Bp(t) ~ ™" [1 - O(v-2)]. The same results are obtained for I(t) and gn(r). The
properties of the Legendre functions [3] allow us to choose the coefficients d,,, e, and
k., so that the second terms in (4, 4) decrease for * — co more rapidly than the first
terms. Let us expand these terms into series in Legendre functions of second kind,which
form a complete, although not orthogonal system

H, (=) 8 ggz (m2n + 2) H, Q5100 (T)

n=y_

8

Lp@= 3 2V (n 204 2) L Quuynjn
n=0

o

K,m=>2 ;22 (met 20+ 2) K, Qk i igm (D)

n=0

Since the computations that follow are very cumbersome, we shall omit them, explaining
just the general idea, We can, of course, seek the functions k,(t), L,(v) and g,{(r) as
well as the coefficients ¢, , directly from (4,2), However, we find that it is simpler to
replace the first equation of (4, 2) by the equivalent property that rot §, is harmonic,

The harmonic property imposes stringent restrictions on the character of dependence
of the functions on the toroidal variables , B and ¢ [2]. For this reason the three con-
ditions of harmonicity of rot §, lead to three recument relations connecting #, " , L,"
and X,,". We note that only two of these conditions are independent by virtue of the
identity div rot §, = 0. It is convenient to employ a condition of harmonicity of div &,
which yields another relation connecting H_", Lp," and X,". From (4, 2) we can obtain
for div &, the relations connecting H,,", L™ and K" with dg, e, and k,, which con-
tain the already determined coefficients b, and c,, (see (3,2) and (4, 1)),

Naturally, the conditions of harmonicity and the equations for div §; do not completely
determine all unknown coefficients, We must also use the boundary conditions given in
(4. 2) which can be rewritten in the form
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Bro(To) = 0, lpy(T0) = 0, gp(ty) = 0 (4. 5)

Obviously, these conditions contain simultaneously the coefficients of #,,", Ln," and
K.,z with all values of » , therefore we cannot determine them one after the other, The
situation is simplified when v, is assumed large and the unknown coefficients are sought
in the form of series in 7,~2. This particular choice follows from the fact that for large
T the Legendre functions can be expanded into series in -2 [3], When the expansion
is terminated at any stage, the conditions (4, 5) contain a limited number of coefficients
and form, together with the recurrent relations, a system of linear equations of finite or-
det, Such a procedure enablies us, in principle, to determine any of the coefficients with
any required degree of accuracy,

Since the number of the coefficients is large, even low order approximations involve
a considerable amount of manipulation, Below we give the first nonvanishing approxi-
mation for § in its explicit form, assuming that © > 1o > 1

1 . . 1 1 1
L, = T—Al/zsm2cp 511"3‘?/,—('—}07"'-2') (4.6)

__LA’/s' B(3-Lcos2 _.1_.(__1__._3_)
=16 sin B (3 -+ cos 29) 7\ =

1 1 1 3 1 1 1 11
L, =g Asin o —; H T T2 e +?)+C°SBT("'?EE+’1—2)}

The first approximation for P, which can be obtained by substituting (4, 6) into (1,1),is
n2
Po=Teeg 1+ 0 (7531 4.7

5, Character of the motion of liquid, Effect of the liquid on
the top, Inthe expressions (3, 3) and (4, 7) we have assumed that ¢ = R* — %2 = 1.
The explicit expressions for Py, and P,, in terms of the torus radii are

2 mn?
P.=P, =g ROMU-+O(YRY], P, = Rr*[1+40 (r*/RY)

2z

Clearly, P,, << P,, atleast when r <€ R. To discover the reason for this, we shall
consider the qualitative aspects of the character of the motion of liquid in a torus under
the action of various angular accelerations, In all the cases the motion of the liquid is
vortical, but the vortices differ substantially from case to case,

When the angular acceleration is directed along the oz-axis, the vortex flows along
the whole tube of the torus, The size of the vortex is determined by the median line
radius R of the torus, The moment I. is small for two reasons: (1) when the tube ra-
dius is reduced,so is its cross section, i, e. the mass of liquid within the vortex is also re-
duced, (2) adhesion of the liquid to the walls reduces its velocity in a narrow tube,

When the angular acceleration is directed along the ox -axis, the reasons given above
are supplemented by another one which is the change in the character of motion, Near
the oz-axis the vortices are plane, but firther away they become curved due to the cur-
vature of the walls and the Coriolis forces, The character of the dependence of . on @
shows that the liquid in motion does not intersect the plane z = 0. Thus each closed
vortex is bounded only by a part of the tube and does not traverse its whole length, As
the result, the distance between the layers of liquid moving in the opposite directions is
determined by the small radius r of the tube, This leads to a sharp increase in the
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interlayer friction thus reducing the liquid velocity, Moreover, the fact that points mo-
ving with opposite velocities are near each other, leads to a further reduction in the con-
tribution of the motion of the liquid towards the moment of impulse of the solid-fluid
system, Therefore the result is Py, <€ Py,

The above discussion appears to be qualitatively applicable to more complex confi-
gurations of the closed tube, Two types of flow can exist in any such tube, one extend-
ing throughout the whole tube, and the other through a part of it, When a close vortex
extending through the whole tube is present, then the moment L is larger than in its
absence, For a plane tube the moment, and therefore the value of P;; is largest when
the angular acceleration is perpendicular to the plane of the tube,

The moment of forces acted upon the top by the liquid has a retarding influence on
the angular acceleration, Therefore the liquid contained in the cavity of the top exerts
a stabilizing influence [1, 4], In the case when the diagonal components of P;; are
different from each other, an optimal orientation of the cavity exists for which the sta-
bilization time is shortest [4], For a torus this situation arises when the principal axes
with the largest and smaliest moment of inertia are parallel to the plane of the torus,
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We investigate the relationships at the discontinuities in magnetizable noncon-
ducting media, The magnetic permeability is assumed to be an arbitrary func-
tion of the magnetic field and, generally speaking, different on each side of the
discontinuity, We note that the contribution of the terms connected with the
magnetizability towards the relations at the discontinuity is substantial also in
the case when the values of permeability at both sides of the discontinuity are
constant and different from each other, We show that the behavior of the adia-
batic shock curve depends substantially on the sign of the difference in the values
of the permeability ahead and behind the discontinuity,



