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We consider a motion of a viscous incompressible liquid in a toroidal cavity with- 
in a top spinning with an arbitrary angular velocity and acceleration. The results 
obtained can be used to determine the position of the toroidal tube filled with a 
viscous liquid relative to the top axes of inertia, which will minimize the time 
necessary to stabilize the motion of the top. 

1, Statement of the problem. It was shown in D] for the motion of a solid 
with cavities completely filled with a viscous liquid, that for the first approximation to 
the value of the Reynolds number R = l2 i TV < 1 and for large values of time t > la/v, 
the contribution of the relative motion of the liquid to the moment of impulse of the 
solid-liquid system does not depend on the initial motion of the liquid and can be writ- 

ten in the form 
L =-- ; i pijs @) e(j), pij = - 5 dj) [& c’i’l dv (1.1) 

i, j=l v 

where the integration is performed over the volume of the cavity. e is the angular ac- 

celeration of the solid and c(*) is the solution of the system (see Cl]) 

AC (i) = \,&- [&), r], div gci) ,_O, c(i) Is = 0 (1.2) 

When time is large, the quantities E(i) and <‘$I . determine the velocity u of the liquid 

relative to the solid, and its generalized pressure p 

is1 i=l, 

In [l] we find the values of P. zj computed for a sphere, an ellipsoid and a cylinder. 
Below we consider the case of a toroidal cavity, representing the simplest example of a 

doubly connected region. 

2. Investigation of equations of motion of a llqufd in a torus. 
Let the cavity have the form of a torus with the median line radius denoted by R and 
the tube radius by r. We introduce the intrinsic coordinate system of the torus with its 
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center at the center of symmetry, the oz -axis directed along the symmetry axis and the 
or- and OY -axes situated in the plane of symmetry. In such a coordinate system the 

tensor f] Pij 11 is diagonal and Pzx = P,,. 
Since the right-hand side of (l.B)‘contains the unit vector of the Cartesian system, 

we shall seek the Cartesian components of the velocities Kci). We shall however write 

the operator A using the toroidal 01, B, 9; ch a zz r coordinate system (see e. g, [2]) 

which allows the separation of variables 

x = ep cos cp, y = cp sin cp, z=csinb/A 

(c2 = RZ - r2, A = z - cos 8, p = sh a / A} 

Within the torus we have z >, zo = R / r and in the following we shall assume, for sim- 

plicity, that c = 1. 
Since div [e@, r] = 0, we have As@) = 0, i. e, the effective pressure is a harmonic 

function. 
We seek a solution of the system (1.2) in the form @f = g,ci) -+ pa@), where p,@) is 

given by the equation 
Agf) = [&), r], gf) ]a = 0 (2.1) 

while p$) can be found using &@) I from 

P.2) 
so that A rot sat”’ = 0. 

From (2.1) and (2.2) it follows that A div &(i’ = - A div &@) = 0, i, 9. div &(‘), 
div &@) and rot @) are also harmonic functions. Below we shall solve (2.1) and (2.2) 
for a partcular set of the unit vectors e@J. 

3, Angular rccal6rrtfon in the direction of the OX-BX~I~ Let us 
first consider the case i = 3. We write the equations in the following form (omitting 
the superscript in 9@) for simplicity): 

AC,, = - Y, C~,]S=~, A&?l=x, &&=O, A&,=0, f,,Is=o (3.1) 

This implies that &, _ = 0. The boundary conditions for g,, and &, are independent 

of 8 and w, while the right-end sides of the corresponding equations are even in 6 and 
contain v only in the form of the multiplying factors sin ‘p and cos 9. Taking this 

into account and using the method of separation of variables, we can write the solution 

(3.2) 

where &,k(z) are the associated Iegendre functions of second kind (see e. g. [3]) and 
the coefficients b,are determined by the boundary conditions fm(zoj = 0. If TO is large, 
then the lower approximation gives e. g. b,, = (62 / n)~,,-~. 

Next we consider &_ From (3.2) it follows that div & = 0, therefore for & we have 
A& = Vs, div gz = 0 and f;, IS L= 0, which implies that Fz G 0 and s G 0. 

Thus the expressions (3.2) give an exact solution of (1.2) for i = 3. This means that 



the angular acceleration dire@ed along the torus axis is associated with the correspond- 
ing effective pressure and the velocity of the liquid component along this axis, both of 

whichareequal to zero. The flow is planar and the liquid rotates along the annulus with 
the velocity ptoportional to Cr. The reason for this is easily discerned when we recall 
that without the viscosity the liquid would not rotate relative to the inertial reference 

system but move as a unit with the velocity [r, o] relative to the torus. The viscosity 

causes the outermost layers of the liquid to adhere to the torus surface and a drag devel- 
ops between the torus and the liquid which results in a more complex distribution of ve- 
locities in the cross section of the torus, 

Substituting the solution (3.2) into (1,1), we obtain 

At large to the integrals can be easily computed to give 

(3.3) 

4, Aagulrr rccelrrrtlon rlon the ox-&xi&, Let us now consider a 
c more complicated case when i = 1 and e ‘) = e,. (It is clear that the case i = 2 is 

completely analogous). Let us determine &. The difference between the system (2.1) 
for this case and (3.1) can be described by the following cyclic transformation z -+ 9 -+ 
2 -+ 2. From this it is evident that cIz E 0 and &, = & sin cp, where r;, is given by the 

formulas (3.2). The solution for {I, has the form 
00 

(4.1) 

The coefficients c, can be determined from the boundary condition gm(rO) = 0. 

Let us find {s. Using (4.1) we find that div cl z F and this leads to the following 

system for 62: 
(4.2) 

The boundary conditions are independent of cp and @, therefore the character of the 
dependence of &and s on 9 and 6 is determined only by the properties of the quan- 
tity F which is odd in 8 and contains p only as sin rp. As the result, & and s can be 

written in the form 1 
00 

Ls = 2 * +Cn 2~.4’/* 2 h,,, (t) sin mp (4.3) 
rn=1 

s = dirsiu cp 2 u,Q&_,,,~ (z) sin rnP 
rn=t 
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The last equation of (4.3) takes into account the harmonic property of the functions s 

(see e.g. [Z]). The coefficients a, and the functions h,(z), Z&z) and ‘&Jr) can obvi- 
ously be found from the equations and the boundary conditions. 

Let us write the functions b,, 2, and (Im in the form resembling that of f&r) and 
g,,,(t) (see (3.2) and (4. l), where d,, e,and &are constants) 

(4.4) 

The first terms in these expressions make no cont~bution to the left-hand part of the 
first equation of (4.2). To clarify the manner in which d,, e, and k, are chosen, we 

consider the following formal symmetry of Eqs. (4.2). 
The coordinates 3, y and z remain invariant under the substitution r -+ e% and 

p -_* rc - jS , but on the other hand, we have F -+ - F and s - - s (see (4.1) and (4.3)). 
Therefore we must have & + - & so that e. g, h, + i; ix/a (--l)mh, (see 4.3)). The 
function h(z) remains finite when z -_j CO, consequently it must have the form 

h,(z) - z -*-l’* [i -I- O(Z-~)]. The same results are obtained for I,(z) and q,Jt). The 
properties of the legendre functions p] allow us to choose the coefficients d,, e, and 

k,so that the second terms in (4.4) decrease for z -+ o;, more rapidly than the first 
terms. Let us expand these terms into series in Iegendre functions of second kind,which 
form a complete, although not orthogonal system 

Since the computations that follow are very cumbersome, we shall omit them, explaining 

just the general idea. We can, of course, seek the functions b(z), &m(z) and q&r) as 
well as the coefficients a =, directly from (4.2). However, we find that it is simpler to 
replace the first equation of (4‘2) by the equivalent property that rot g, is harmonic. 

The harmonic property imposes stringent restrictions on the character of dependence 
of the functions on the toroidal variables z, b and rp @I. For this reason the three con- 
ditions of harmonic&y of rot g, lead to three recurrent relations connecting H,,,n , L,Q 
and Kmn. We note that only two of these conditions are independent by virtue of the 
identity div rot‘ g, = 0. It is convenient to employ a condition of harmonicity of div 6s 
which yields another relation connecting ~,n, Lmn and KmnS From (4.2) we can obtain 
for div g, the relations connecting El,%, L,,,” and Kmn with d,, e, and k, which con- 
tain the already determined coefficients &,and cm (see (3.2) and (4. I)), 

Nat~ally, the conditions of harmonici~ and the equations for div P, do not completely 
determine all unknown coefficients. We must also use the boundary conditions given in 
(4.2) which can be rewritten in the form 
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hm(~o) = 07 4&o) = 0, qm(zo) = 0 (4.5) 

Obviously, these conditions contain simultaneously the coefficients of H,*, Lmn and 
Iimn with all values of n , therefore we cannot determine them one after the other.The 
situation is simplified when ~3 is assumed large and the unknown coefficients are sought 
in the form of series in 20-z. This particular choice follows from the fact that for large 
z the Legendre functions can be expanded into series in a-2 p]. When the expansion 
is terminated at any stage, the conditions (4.5) contain a limited number of coefficients 

and form, together with the recurrent relations, a system of linear equations of finite or- 
der. Such a procedure enables us, in principle, to determine any of the coefficients with 
any required degree of accuracy. 

Since the number of the coefficients is large, even low order approximations involve 

a considerable amount of manipulation. Below we give the first nonvanishing approxi- 
mation for g- in its explicit form, assuming that z > TO >> 1 

The first approximation for P,, which can be obtained by substituting (4.6) into (1. l),is 

(4.7) 

5. Chrrrcter of the motion of Ifquld. Effect of the liquid on 
the top. In the expressions (3.3) and (4.7) we have assumed that ~2 = R2 - 9 = 1. 

The explicit expressions for P,, and P,, in terms of the torus radii are 

P** = f RV [I + 0 (r2/P)] 

Clearly, P,. -g Pzz at least when r (( R. To discover the reason for this, we shall 

consider the qualitative aspects of the character of the motion of liquid in a torus under 

the action of various angular accelerations. In all the cases the motion of the liquid is 
vertical. but the vortices differ substantially from case to case. 

When the angular acceleration is directed along the oz-axis, the vortex flows along 
the whole tube of the torus. The sis of the vortex is determined by the median line 
radius R of the torus. The moment L is small for two reasons: (1) when the tube ra- 
dius is reduced.ao is its cross section, i. e. the mass of liquid within the vortex is also re - 
duced, (2) adhesion of the liquid to the walls reduces its velocity in a narrow tube. 

When the angular acceleration is directed along the oz -axis, the reasons given above 
are supplemented by another one which is the change in the character of motion. Near 
the oz-axis the vortices are plane, but further away they become curved due to the cur- 
vature of the walls and the Coriolis forces. The character of the dependence of & on cp 
shows that the liquid in motion does not intersect the plane .z = 0. Thus each closed 
vortex is bounded only by a part of the tube and does not traverse its whole length. As 
the result, the distance between the layers of liquid moving in the opposite directions is 
determined by the small radius r of the tube. This leads to a sharp increase in the 
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interlayer friction thus reducing the liquid velocity. Moreover, the fact that points mo- 
ving with opposite velocities are near each other, leads to a further reduction in the con- 

tribution of the motion of the liquid towards the moment of impulse of the solid-fluid 

system. Therefore the result is PXs < P,,. 
The above discussion appears to be qualitatively applicable to more complex confi- 

gurations of the closed tube. Two types of flow can exist in any such tube, one extend- 

ing t~oughout the whole tube, and the other through a part of it. When a close vortex 
extending through the whole tube is present, then the moment l, is larger than in its 

absence. For a plane tube the moment, and therefore the value of Pil is largest when 

the angular acceleration is perpendicular to the plane of the tube. 

The moment of forces acted upon the top by the liquid has a retarding influence on 
the angular acceleration, Therefore the liquid contained in the cavity of the top exerts 

a stabilizing influence 111 41. In the case when the diagonal com~nents of P,, are 
different from each other, an optimal orientation of the cavity exists for which the sta- 

bilization time is shortest [4]. For a torus this situation arises when the principal axes 

with the largest and smallest moment of inertia are parallel to the plane of the torus. 
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We investigate the relationships at the discontinuities in magnetizable noncon- 

ducting media. The magnetic permeability is assumed to be an arbitrary func- 
tion of the magnetic field and, generally speaking, different on each side of the 
discontinuity. We note that the contribution of the terms connected with the 
magneti~bili~ towards the relations at the discontinue is substantial also in 

the case when the values of permeability at both sides of the discontinuity are 
constant and different from each other. We show that the behavior of the adia- 
batic shock curve depends substantially on the sign of the difference in the values 
of the permeability ahead and behind the discontinuity, 


